Taxas Equivalentes
Duas taxas i1 e i2 são equivalentes, se aplicadas ao mesmo Capital P durante o mesmo período de tempo, através de diferentes sistemas de capitalização, produzem o mesmo montante final.
- Seja o capital P aplicado por um ano a uma taxa anual ia .
- O montante M ao final do período de 1 ano será igual a M = P(1 + i a )
- Consideremos agora, o mesmo capital P aplicado por 12 meses a uma taxa mensal im .
- O montante M’ ao final do período de 12 meses será igual a M’ = P(1 + im)12 .
Pela definição de taxas equivalentes vista acima, deveremos ter M = M’.
Portanto, P(1 + ia) = P(1 + im)12
Daí concluímos que 1 + ia = (1 + im)12
Com esta fórmula podemos calcular a taxa anual equivalente a uma taxa mensal conhecida.
Exemplos:
1 - Qual a taxa anual equivalente a 8% ao semestre?
Em um ano temos dois semestres, então teremos: 1 + ia = (1 + is)2
1 + ia = 1,082
ia = 0,1664 = 16,64% a.a.
2 - Qual a taxa anual equivalente a 0,5% ao mês?
1 + ia = (1 + im)12
1 + ia = (1,005)12
ia = 0,0617 = 6,17% a.a.
Taxas Nominais
Alguns exemplos:
- 340% ao semestre com capitalização mensal.
- 1150% ao ano com capitalização mensal.
- 300% ao ano com capitalização trimestral.
A taxa Efetiva é quando o período de formação e incorporação dos juros ao Capital coincide com aquele a que a taxa está referida.
Alguns exemplos:
- 140% ao mês com capitalização mensal.
- 250% ao semestre com capitalização semestral.
- 1250% ao ano com capitalização anual.
Nenhum comentário:
Postar um comentário